动力电池结构件脉冲模式焊接特点
由于动力电池结构件中多数为铝件,铝合金表面对光的反射率很高,当高强度激光束射到材料表面时,金属表面将会有60%-98%的激光能量因反射而损失掉,且反射率随表面温度变化。所以焊接时会选择尖形波或者双峰波。
动力电池焊接时出现“小孔”形成,进行深熔焊时,金属熔化后液态金属对激光的吸收率迅速增大,此时应迅速减小激光能量,以小功率进行焊接,以免造成飞溅。此种焊接波形后面缓降部分脉宽较长,能够有效地减少气孔和裂纹的产生。采用此波形,使焊缝熔化凝固重复进行,以降低熔池的凝固速度。此波形在焊接种类不同组件时可做适当调整。
选择合适的离焦量也可减少气孔的产生,离焦量的变化对焊缝的表面成形和熔深均有很大的影响,采用负离焦可以增加熔深,而脉冲焊接时,正离焦会使焊缝表面更加平滑美观。
由于原材料对激光的反射率较高,为了防止激光束垂直入射造成垂直反射而损害激光聚焦镜,焊接过程中通常将焊接头偏转一定角度。焊点直径和有效结合面的直径随激光倾斜角增大而增大,当激光倾斜角度为40°时,获得最大的焊点及有效结合面。焊点熔深和有效熔深随激光倾斜角减小,当大于60°时,其有效焊接熔深降为零。所以倾斜焊接头到一定角度,可以适当增加焊缝熔深和熔宽。
动力电池结构组件激光焊接时,焊接速度越快,越容易出现裂纹。因为焊接速度过快,过冷度大,焊缝区晶粒细化,形成了大量同方向生长的“束状晶”,在束状晶之间的晶面上有利于裂纹的产生。而焊接速度过快,焊件熔深相对变小。
下一篇:动力电池防爆片激光焊接特点
上一篇:储能新能源电池防爆片激光焊接特点